Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 110(6): 116, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318661

RESUMO

The particle size reduction technology is used in several segments, including sunscreens and new techniques and product improvement. One of the main particles used in the sunscreens formulation is titanium dioxide (TiO2). This formulation allows for better characteristics of these products. Perspectives like incorporation of the particles by other biological systems beyond humans and their effects should be observed. This work aimed to evaluate the titanium dioxide microparticles phytotoxicity on Lactuca sativa L. plants through tests of germination, growth, and weight analysis using microscopy techniques: optical microscopy (OM) and scanning electron microscopy (SEM). Some of the results showed cellular and morphological damage, mainly in the roots and 50 mg L-1 TiO2 concentration, confirmed by SEM. Additionally, anatomical damages like vascular bundle disruption and irregularity in the cortex cells were confirmed by SEM. Additionally, anatomical damages were observed on the three main organs (root, hypocotyl, and leaves) evidenced by the OM. Perspectives to confirm new hypotheses of the interaction of nanomaterials with biological systems are necessary.


Assuntos
Lactuca , Plântula , Humanos , Lactuca/metabolismo , Protetores Solares , Germinação , Sementes , Raízes de Plantas
2.
Environ Res ; 233: 116489, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385417

RESUMO

Drylands are fragile environments that should be carefully managed to improve their quality and functions to achieve sustainable development. Their major problems involve low availability of nutrients and soil organic carbon content. Biochar effect on soil is a joint response of micro to nano sized biochar and soil characteristics. In this review, we attempt to carry out a critical analysis of biochar application to enhance dryland soil quality. Correlating the effects identified from its soil application, we explored the subjects that remains open in the literature. The relation of composition-structure-properties of biochar vary among pyrolysis parameters and biomass sources. Limitations in soil physical quality in drylands, such as low water-holding capacity, can be alleviated by applying biochar at a rate of 10 Mg ha-1 also resulting in beneficial effects on soil aggregation, improved soil porosity, and reduced bulk density. Biochar addition can contribute to the rehabilitation of saline soils, by releasing cations able to displaces sodium in the exchange complex. However, the recovery process of salt-affected soils might be accelerated by the association of biochar with another soil conditioners. This is a promising strategy especially considering the biochar alkalinity and variability in nutrients bioavailability to improve soil fertilization. Further, while higher biochar application rate (>20 Mg ha-1) might change soil C dynamics, a combination of biochar and nitrogen fertilizer can increase microbial biomass carbon in dryland systems. Other aspect of biochar soil application is the economic viability of scale-up production, which is mainly associate to pyrolysis process being biochar production the costliest stage. Nevertheless, the supplying of feedstock might also represent a great input on biochar final costs. Therefore, biochar-based technology is a big opportunity to improve fragile environments such as drylands, integrating sustainable technologies with regional development. Considering the specificity of application area, it might be a model of sustainable agricultural practices protecting the environment in a bioeconomic perspective.


Assuntos
Carbono , Solo , Humanos , Carvão Vegetal , Ecossistema
3.
Ecotoxicol Environ Saf ; 205: 111173, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853866

RESUMO

Fulvic acids (FA) are one of the components of humic substances and play an important role in the interaction with metallic species and, consequently, the bioavailability, distribution and toxicity of metals. However, only a few studies have investigated these FA properties in specific environment, such as anthropogenic soils. Therefore, knowledge about FA molecular composition as well as the FA-metal interaction is essential to predict their behavior in the soil. For this reason, the aim of this study was to investigate the molecular composition of FA extracted from two sites in an anthropogenic soil (Terra Mulata), from the Amazon region, as well as their interactions with Cu(II) ions as a model. Results from 13C NMR, infrared and elemental analysis showed that these FA are composed mostly by alkyl structures and oxygen-functional groups, e.g., hydroxyl, carbonyl and carboxyl. The interaction with Cu(II) ions was evaluated by fluorescence quenching, in which the FA showed both high quantity of complexing sites per gram of carbon and good affinity to interact with the metal when compared with other soil FA. The results showed that the complexation capacity was highly correlated by the content of functional groups, while the binding affinity was largely influenced by structural factors. In addition, through the lifetime decay given by time-resolved fluorescence, it was concluded that static quenching took place in FA and Cu(II) interaction with the formation of a non-fluorescent ground-state complex. Therefore, this fraction of soil organic matter will fully participate in complexation reactions, thereby influencing the mobility and bioavailability of metal in soils. Hence, the importance of the study, and the role of FA in the environment, can be seen especially in the Amazon, which is one of the most important biomes in the world.


Assuntos
Benzopiranos/análise , Complexos de Coordenação/análise , Cobre/análise , Substâncias Húmicas/análise , Poluentes do Solo/análise , Solo/química , Benzopiranos/química , Disponibilidade Biológica , Brasil , Carbono/análise , Complexos de Coordenação/química , Cobre/química , Fluorescência , Íons , Modelos Teóricos , Poluentes do Solo/química
4.
Sci Total Environ ; 722: 137815, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32179299

RESUMO

Humic acids (HA) play an important role in the distribution, toxicity, and bioavailability of metals in the environment. Humic-like acids (HLA) that simulate geochemical processes can be prepared by NaOH aqueous extraction from hydrochars produced by hydrothermal carbonization (HTC). HLA can exhibit properties such as those found in HA from soils, which are known for their ability to interact with inorganic and organic compounds. The molecular characteristics of HLA and HA help to explain the relationship between their molecular features and their interaction with metallic species. The aim of this study is to assess the molecular features of HA extracted from Terra Mulata (TM) and HLA from hydrochars as well as their interaction with metals by using Cu(II) ions as a model. The results from 13C NMR, elemental analysis, FTIR, and UV-Vis showed that HA are composed mostly of aromatic structures and oxygenated functional groups, whereas HLA showed a mutual contribution of aromatic and aliphatic structures as main constituents. The interactions of HA and HLA with Cu(II) ions were evaluated through fluorescence quenching, in which the density of complexing sites per gram of carbon for interaction was higher for HLA than for HA. Furthermore, the HLA showed similar values for stability constants, and higher than those found for other types of HA in the literature. In addition, the average lifetime in both humic extracts appeared to be independent of the copper addition, indicating that the main mechanism of interaction was static quenching with a non-fluorescent ground-state complex formation. Therefore, the HLA showed the ability to interact with Cu(II) ions, which suggests that their application can provide a new approach for remediation of contaminated areas.

5.
Environ Sci Pollut Res Int ; 26(27): 27579-27589, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29594880

RESUMO

Hydrothermal carbonization (HTC) is a thermochemical process carried out in an aqueous medium. It is capable of converting biomass into a solid, carbon-rich material (hydrochar), and producing a liquid phase (process water) which contains the unreactive feedstock and/or chemical intermediates from the carbonization reaction. The aim of this study was to evaluate the characteristics of process water generated by HTC from vinasse and sugarcane bagasse produced by sugarcane industry and to evaluate its toxicity to both marine (using Artemia salina as a model organism) and the terrestrial environment (through seed germination studies of maize, lettuce, and tomato). The experiments showed that concentrated process water completely inhibited germination of maize, lettuce, and tomato seeds. On the other hand, diluted process water was able to stimulate seedlings of maize and tomato and enhance root and shoot growth. For Artemia, the LC50 indicated that the process water is practically non-toxic; however, morphological changes, especially damages to the digestive tube and antennas of Artemia, were observed for the concentration of 1000 mg C L-1.


Assuntos
Carbono/química , Saccharum/química , Biomassa , Germinação , Indústrias , Lactuca/química , Solanum lycopersicum/química , Sementes/química , Água , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...